Reducing $/Wp of Thin Film Si Through Materials Cost, Scale and Technology

Anish Tolia, Ph.D
Head of Market Development-Americas
Linde Electronics
Agenda

Introduction to Linde

Drivers for Cost Reduction

On-Site Production of Key Gases

Cost Reduction Roadmap
Linde is a $19B global gas and engineering company with business in over 100 countries worldwide and global solar customer base.
Agenda

Introduction to Linde

Drivers for Cost Reduction

On-Site Production of Key Gases

Cost Reduction Roadmap
Typical Gas Cost Breakdown for Thin Film Silicon

OEM A
- **Silane**: 40%
- **NF3/F2**: 39%
- **Dopants**: 7%
- **N2**: 3%
- **H2**: 10%
- **Others**: 1%

OEM B
- **Silane**: 44%
- **DEZ**: 26%
- **Dopants**: 8%
- **N2**: 2%
- **H2**: 1%
- **Others**: 17%

OEM C
- **Silane**: 44%
- **NF3/F2**: 36%
- **Dopants**: 5%
- **N2**: 7%
- **H2**: 8%

Silane, Cleaning Gas and Bulk H2/N2 are key cost components
Factors Influencing Cost of Materials in the Process

Direct Material Cost
- Recipe and Consumption Rate
- Delivery Scheme
- Market Conditions
- Materials Choice

Scale of Manufacturing
- On Site Generation
- Volume Cost Benefits
- Site and Location Benefits

Technology
- Throughput Improvement
- Efficiency Improvement
- Yield Improvement

Linear Benefit
- Disproportional Benefits
Gases have significant impact over and above material cost.
Leveraging gas technology is critical for cost reduction.
Linde Solar Technology Development Programmes
All development activity focused on reducing $/Wp

Source: BA Electronics analysis
Agenda

Introduction to Linde

Drivers for Cost Reduction

On-Site Production of Key Gases

Cost Reduction Roadmap
Is onsite production the right choice for gases?

Benefits

• Secure supply. No dependence on multiple weekly or daily trailer deliveries

• Lower cost. Reduced transportation costs. No liquid production cost (for H₂ and N₂). Improved COO (F₂)

• Increased safety: No frequent change-outs of toxic and flammable gas cylinders

• Reduced Carbon Footprint

Considerations

• Requires higher initial capital cost outlay for gas supplier

• Requires long term contract and minimum consumption by customer

• Requires back up schemes with on-site storage

On-Site Gas Production can reduce cost/Wp for high volume production
Minimum production scale for viable on-site gas supply

Tandem Junction Silicon Process

<table>
<thead>
<tr>
<th>Annual Production in MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

Silane
- ISO Containers
- Over the fence supply

Clean Gas
- Scalable On-Site Fluorine Generator.

Nitrogen
- Small Packaged N2 Plants
- Large Scale N2 plants

Hydrogen
- Liquid or Gas H2
- Small Packaged H2 Plant
- Large SMR

<table>
<thead>
<tr>
<th>MW Produced/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Silane (MT/yr)</th>
<th>18-60</th>
<th>50-150</th>
<th>90-300</th>
<th>150-500</th>
<th>300-1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Gas (MT/yr)</td>
<td>65-70</td>
<td>160-175</td>
<td>325-350</td>
<td>550-575</td>
<td>100-120</td>
</tr>
<tr>
<td>N2 (Nm3/hr)</td>
<td>700-900</td>
<td>1800-2500</td>
<td>3500-4500</td>
<td>6000-7500</td>
<td>12000-15000</td>
</tr>
<tr>
<td>H2 (Nm3/hr)</td>
<td>30-250</td>
<td>75-700</td>
<td>150-1500</td>
<td>250-2500</td>
<td>500-5000</td>
</tr>
</tbody>
</table>

Consumption rate depends on process and technology

12/8/2009
Silane: Current Supply Scheme

Large Scale Polysilicon Plant
>1000TPA Silane

— Most Silane is produced by major polysilicon manufacturers
— Major Industrial Gas companies purchase, repackage and deliver to end user
— Price and availability of Silane is highly variable

Stable Supply and Cost Reduction requires alternative supply model
Distributed Silane Production and Delivery

- Large Solar Cell Customer (>250MW)
 - Over the fence plus distribution
 - Some risk is shared
 - Gasco owns and operates Silane plant
 - Customer can co-invest in Silane production

- Small Solar Cell Customer (Over the fence)
 - Reduced cost of Silane
 - Guaranteed supply
 - Stable price
 - Reduced risk during container changes
 - Reduced Carbon Footprint

Direct Pipeline
- Some risk is shared
- Gasco owns and operates Silane plant
- Customer can co-invest in Silane production
- Reduced cost of Silane
- Guaranteed supply
- Stable price
- Reduced risk during container changes
- Reduced Carbon Footprint
Replacing NF₃ with On-site F₂ to address key throughput, cost & environmental concerns

How?

- **Higher Line productivity**
 - Reduce cleaning time by **50%**

- **Lower cost per clean**
 - 80 kg of F₂ delivers the same cleaning efficiency as 100 kg of NF₃

- **Lower environmental impact**
 - F₂ has **zero** global warming potential vs. 17,000 for NF₃

Benefit

- Increase line throughput by **up to 10%**
 - Direct material cost saving → 10-20% less mass of gas usage per clean
 - 60% reduced electricity consumption in plasma source

- Not subjected to current or future emission restrictions
 - Easier to abate

Modular On Site F₂ Solution:
Eliminates logistics of trailer supply chain and guarantees security of supply

12/8/2009
Generation-\(F^\circ\)® - a modular solution for any thin film silicon line

<table>
<thead>
<tr>
<th>MW CAPACITY</th>
<th>65 – 1 x TJ line</th>
<th>330 – 5 x TJ lines</th>
<th>1000 – 3 x Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonnes / yr F(_2)</td>
<td>~70</td>
<td>~350</td>
<td>~1150</td>
</tr>
<tr>
<td>Potential Saving over NF3 ($/year)</td>
<td>~$2.5M</td>
<td>~$11.7M</td>
<td>~$32.7M</td>
</tr>
</tbody>
</table>
Nitrogen: Variable size on-site generators for all size solar fabs

Threshold for N²-Onsite depends on proximity of fab to an ASU

Liquid assist plants use delivered liquid N₂. Compressor plants can operate without Liquid N₂

Typical lead time of small plants is 12-18 months

Initial production ramp is managed by Liquid N₂ tanks

Back up is by Liquid N₂ tanks

Pipeline possible based on location

Packaged Liquid-assist plants
250-2500 Nm³/hr

Packaged Compressor plants
350-3500 Nm³/hr

Large scale ASU
4200-15000 Nm³/hr
Onsite Hydrogen: Selection Considerations

- Is it possible to get Liquid H₂ delivery? For example in EU and US, LH2 is readily available but not so in Asia.

- Proximity to H₂ plant

- Natural Gas availability and quality

- Ramp schedule and full production demand

- Back up schemes with liquid or compressed H₂

Basics of On-Site H₂ Generation

- Smaller scale H₂ in remote regions can be produced by water electrolysis (< 50 Nm³/hr)

- On larger scale, H₂ is generated from Natural Gas (CH₄)
 \[\text{CH}_4 + 2\text{H}_2\text{O} \rightarrow \text{CO}_2 + 3\text{H}_2 \]

- Quality of H₂ and purification requirements depends on quality of Natural Gas

- Other possible fuel sources include methanol and higher hydrocarbons
Hydrogen – large consumption drives on-site generation

Single Junction

• < 80 Nm³/hr
• Tube trailer/Liquid H₂/Electrolyser
• 3-6 months Leadtime

Tandem Junction < 300 MW

• 80-1000 Nm³/hr
• Small Packaged SMR
• Tube trailer back-up
• ~12 months leadtime

Tandem Junction > 300 MW

• 1000-4,200 Nm³/hr
• Large SMR
• 18-24 months leadtime

Hydrogen pipeline supply may be possible depending on location.
Natural Gas feedstock supply is critical to low cost production via SMR
Agenda

Introduction to Linde

Drivers for Cost Reduction

On-Site Production of Key Gases

Cost Reduction Roadmap
Gases Value Improvement per Wp - 2011 Roadmap.

Note: Excludes cost of site distribution installation
Estimate additional US$0.02/Wp
Gases Value Improvement per Wp - 2013 Roadmap.

Note: Excludes cost of site distribution installation
Estimate additional US$0.02/Wp
Take-Away Messages

Gases have a disproportionate influence (more than just material cost) on total cost of production of thin film silicon solar cells

Gas technologies affect throughput, efficiency and yield

On-site plants for critical gases are necessary to meet logistical and cost challenges.

On-site production threshold depends on several factors
 — Technology of choice and gas consumption rates
 — Planned scale of operation
 — Proximity to Bulk Gas Manufacturing locations

Work closely with gas supplier through the planning process to determine needs
Anish Tolia, Ph.D
Head of Market Development-Americas
anish.tolia@linde.com
408-823-2258